skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grünbaum, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Pursuing cutting edge questions in organismal biology in the future will require novel approaches for training the next generation of organismal biologists, including knowledge and use of systems-type modeling combined with integrative organismal biology. We link agendas recommending changes in science education and practice across three levels: Broadening the concept of organismal biology to promote modeling organisms as systems interacting with higher and lower organizational levels; enhancing undergraduate science education to improve applications of quantitative reasoning and modeling in the scientific process; and K-12 curricula based on Next Generation Science Standards emphasizing development and use of models in the context of explanatory science, solution design, and evaluating and communicating information. Out of each of these initiatives emerges an emphasis on routine use of models as tools for hypothesis testing and prediction. The question remains, however, what is the best approach for training the next generation of organismal biology students to facilitate their understanding and use of models? We address this question by proposing new ways of teaching and learning, including the development of interactive web-based modeling modules that lower barriers for scientists approaching this new way of imagining and conducting integrative organismal biology. 
    more » « less
  2. null (Ed.)
  3. Educational research supports incorporating active engagement into K-12 education using authentic STEM experiences. While there are discipline-specific resources to provide students with such experiences, there are limited transdisciplinary opportunities that integrate engineering education and technological skill-building to contextualize core scientific concepts. Here, we present an adaptable module that integrates hands-on technology education and place-based learning to improve student understanding of key chemistry concepts as they relate to local environmental science. The module also supports disciplinary core ideas, practices, and cross-cutting concepts in accordance with the Next Generation Science Standards. We field-tested our module in three different high school courses: Chemistry, Oceanography and Advanced Placement Environmental Science at schools in Washington, USA. Students built spectrophotometric pH sensors using readily available electronic components and calibrated them with known pH reference standards. Students then used their sensors to measure the pH of local environmental water samples. Assessments showed significant improvement in content knowledge in all three courses relating to environmental relevance of pH, and to the design, use and environmental application of sensors. Students also reported increased self-confidence in the material, even when their content knowledge remained the same. These findings suggest that classroom sensor building and collection of environmental data increases student understanding and self-confidence by connecting chemistry concepts to local environmental settings. 
    more » « less